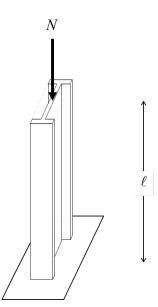

Problème 1 : Calculer par la méthode de Timoshenko la charge critique N_c du système ci-contre en prenant comme déformée approchée celle qui se produit en l'absence de fils (les fils sont initialement tendus).

Problème 2 : Calculer par la méthode de Timoshenko la charge critique approchée N_c du système AB illustré ci-dessous, composé d'une poutre en acier sur appuis simples de longueur ℓ et de section à moment d'inertie I et contraint à l'articulation B par un ressort de rotation à raideur k. Choisir comme approximation de la déformée le mode de flambage fondamental qui se produit sans le ressort spiral.


Application : ℓ = 2 m, I = 25 cm⁴, k = 60 kNm/rad.

Problème 3 : Une colonne encastrée au pied et libre en tête, est formée d'un profilé laminé HEB 240 en acier doux. Elle est soumise à une charge verticale N de compression (le poids propre est négligeable). Calculer la valeur maximale de N pour la compression et le flambement avec un coefficient de sécurité de 1.5

Application:

$$\ell$$
 = 3 m; E = 210 GPa; σ_e = 240 MPa; I_v = 11260 cm⁴; I_z = 3920 cm⁴; A = 106 cm²

